-16t^2+160t=256

Simple and best practice solution for -16t^2+160t=256 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -16t^2+160t=256 equation:



-16t^2+160t=256
We move all terms to the left:
-16t^2+160t-(256)=0
a = -16; b = 160; c = -256;
Δ = b2-4ac
Δ = 1602-4·(-16)·(-256)
Δ = 9216
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{9216}=96$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(160)-96}{2*-16}=\frac{-256}{-32} =+8 $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(160)+96}{2*-16}=\frac{-64}{-32} =+2 $

See similar equations:

| 5x+35=140 | | 70=5y+5 | | -2h-16=13h-6 | | (x−6 13)÷0.8=(5x+6)÷13 | | 11=2k+1 | | M/1.5m=15 | | (13x-19)+(4x+12)=180 | | 13(m-2)=-4(11=m)=1 | | 1.8xx=10 | | 3x13=42 | | 1.666667=x/x-4 | | (142−1)·q=142·981−981 | | 9=f-19/6 | | 4x-3=1x+6 | | y=-8*4 | | y=5−7 | | 48÷6+x=11 | | 749+(y+31)=(749+936)+31 | | 8.2(s+4)=6.4s+5.2 | | y=-8*5 | | g-45/5=8 | | 686.49+697.12=g+686.49 | | .5x-8=11-7x+12x | | 9x+9=4x+25 | | s+90=90+89 | | 19(2m−16)=13(2m+4)  | | 1.6=x/x-4 | | 88·34=34·k | | –19z−12=–20z | | g+66=66+75 | | n+(79+32)=(29+79)+32 | | 9x+4=13x+4 |

Equations solver categories